Reconstructing Ancestral Genomic Orders Using Binary Encoding and Probabilistic Models

نویسندگان

  • Fei Hu
  • Lingxi Zhou
  • Jijun Tang
چکیده

Changes of gene ordering under rearrangements have been extensively used as a signal to reconstruct phylogenies and ancestral genomes. Inferring the gene order of an extinct species has the potential in revealing a more detailed evolutionary history of species descended from it. Current tools used in ancestral reconstruction may fall into parsimonious and probabilistic methods according to the criteria they follow. In this study, we propose a new probabilistic method called PMAG to infer the ancestral genomic orders by calculating the conditional probabilities of gene adjacencies using Bayes’ theorem. The method incorporates a transition model designed particularly for genomic rearrangement scenarios, a reroot procedure to relocate the root to the target ancestor that is inferred as well as a greedy algorithm to connect adjacencies with high conditional probabilities into valid gene orders. We conducted a series of simulation experiments to assess the performance of PMAG and compared it against previously existing probabilistic methods (InferCARsPro) and parsimonious methods (GRAPPA). As we learned from the results, PMAG can reconstruct more correct ancestral adjacencies and yet run several orders of magnitude faster than InferCARsPro and GRAPPA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders with Duplications

Accurately reconstructing the large-scale gene order in an ancestral genome is a critical step to better understand genome evolution. In this paper, we propose a heuristic algorithm for reconstructing ancestral genomic orders with duplications. The method starts from the order of genes in modern genomes and predicts predecessor and successor relationships in the ancestor. Then a greedy algorith...

متن کامل

DUPCAR: Reconstructing Contiguous Ancestral Regions with Duplications

Accurately reconstructing the large-scale gene order in an ancestral genome is a critical step to better understand genome evolution. In this paper, we propose a heuristic algorithm, called DUPCAR, for reconstructing ancestral genomic orders with duplications. The method starts from the order of genes in modern genomes and predicts predecessor and successor relationships in the ancestor. Then a...

متن کامل

EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution

Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary...

متن کامل

Reconstruction of Ancestral Gene Orders Using Probabilistic and Gene Encoding Approaches

Current tools used in the reconstruction of ancestral gene orders often fall into event-based and adjacency-based methods according to the principles they follow. Event-based methods such as GRAPPA are very accurate but with extremely high complexity, while more recent methods based on gene adjacencies such as InferCARsPro is relatively faster, but often produces an excessive number of chromoso...

متن کامل

FastML: a web server for probabilistic reconstruction of ancestral sequences

Ancestral sequence reconstruction is essential to a variety of evolutionary studies. Here, we present the FastML web server, a user-friendly tool for the reconstruction of ancestral sequences. FastML implements various novel features that differentiate it from existing tools: (i) FastML uses an indel-coding method, in which each gap, possibly spanning multiples sites, is coded as binary data. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013